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LE’lTER TO THE EDITOR 

The two-dimensional Ising model in a magnetic field: 
a numerical check of Zamolodchikov’s conjecture 

Malte Henkel and Hubert Saleur 
Service de Physique Thtoriquef, Centre d’Etudes Nucltaires de Saclay, F-91191 Cif-sur- 
Yvette Cedex, France 

Received 2 March 1989 

Abstract. We calculate numerically the transfer matrix spectrum of the 2D Ising model at 
T = T, and in a magnetic field h # 0. In the Limit h + 0, our results reproduce the mass 
spectrum recently conjectured by Zamolodchikov. Scaling functions are also studied. 

The application of the principle of conformal invariance has provided a variety of 
new results for two-dimensional critical phenomena. Among these are the exact 
determination of the central charge, exponents and correlation functions for numerous 
physical systems. 

A complete understanding of a critical point should also include the universal 
properties of the scaling region, where the correlation length is finite but much larger 
than any microscopic scale. Less progress has been made in this direction. Besides 
several kinds of perturbation expansions (Reinicke 1987, Saleur and Itzykson 1987, 
Dotsenko 1989) based on conformal invariance techniques, one of the main general 
results obtained so far is a quantitative version of the c theorem of Zamolodchikov 
(1986), which allowed the calculation of several amplitude ratios (Cardy 1988a, b, 
Cardy and Saleur 1989). 

It seems easier to consider off -critical directions which preserve integrability. The 
latter property is present in any conformal invariant theory, an infinite set of local 
integrals of motion being obtained by considering composite fields made up of T ( z )  
( F ( 5 ) ) .  As shown by Zamolodchikov (1987), some of these integrals of motion can 
actually survive if one perturbs the fixed-point Hamiltonian with particular relevant 
operators cp to obtain a massive field theory. The cases considered so far are (P,~, cpZl 
and cpI3 (where the indices are usual Kac labels). In such cases, the S matrix factorises 
in terms of two particle scattering amplitudes which must satisfy the Yang-Baxter 
equation, bootstrap requirements as well as physical constraints. This allows, in 
principle, the determination of matrix elements, and in particular of the associated 
mass spectrum. 

Using this line of thought, Zamolodchikov (1988) derived a ‘minimal’ S matrix for 
the three-states Potts model perturbed by the thermal operator rp,, (hence with the 
symmetry Z3 preserved). This result was proved directly by Tsvelick (1989). There 
the mass spectrum corresponds simply to a particle-antiparticle pair at mass m, and 
a continuum starting at 2m. 
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In a very recent work, Zamolodchikov (1989) went on by studying the Ising model 
in a magnetic field, i.e. the conformal unitary model with c = perturbed by q12. Some 
integrals of motion can then be built explicitly which exhibit a structure related to the 
exceptional Lie group Eg. The appearance of the latter is not so surprising if one 
notices that c =$ theory, besides the usual x (AI)1/(Al)2,  can also be obtained 
as the coset (Goddard et a1 1986) (E8), x (Es)l/(Eg)2, and suggests general connections 
between the coset construction and integrability. With some natural assumptions, 
Zamolodchikov (1989) then derived the factorised S matrix. It contains eight particles 
with the following mass spectrum: 

m, = m 

m4 = 2m2 cos 7 n / 3 0  

m6 = 2m2 cos r / 3 0  

mg = 4m2 c o s  w /S  c o s  2r/ 15. 

m2 = 2m c o s  w / 5  m3 = 2m cos ~ / 3 0  

ms = 2m2 cos 2 ~ 1 1 5  
( 1 )  

m7 = 4m2 cos ~ / 5  cos 7 ~ 1 3 0  

m4 
The associated scattering theory is not yet fully understood; in particular the masses 
. . . me are above the cut starting at 2m, and the reason for their stability is unknown. 
In this letter, we would like to report numerical calculations which confirm the 

spectrum (1). 
For technical reasons, it is more convenient to consider a very anisotropic limit 

where the Ising model transfer matrix reduces to the exponential of the following 
quantum Hamiltonian (Kogut 1979): 

N 
H = - C (tu"( n)+ d ( n ) d ( n  + 1 ) +  h d ( n ) )  ( 2 )  

I=! 

where the cr are Pauli matrices. t is related to the temperature and, for T = T,, t = 1, 
to which we restrict ourselves here. h is similarly related to the usual magnetic field, 
and h = O  at criticality. The masses mi are simply obtained as mi = Ei -Eo where Eo 
is the ground-state energy. We are interested in the scaling region, when h + 0, N + 00 

such that the produd 

p = hNI5/' (3) 

mi = h8"5Gi(fi). (4) 

remains finite. In this limit, gaps are expected to satisfy a scaling law 

This essentially does not depend on the anisotropic limit. 

its eigenvalues can be labelled by the momenta. The translation operator T is 
Since H is invariant under translations (we take periodic boundary conditions), 

On a finite lattice, k takes the values 0, 1,. . . , N -  l(mod N )  but, in contrast to the 
situation found precisely at the critical point, it is P and not k which should be 
interpreted as momentum, when taking the continuum limit. 

What was known hitherto about the functions Gi(p)  is the limit p +O, which is 
related in the standard way to critical dimensions (for instance limfi+o ( m 2 / m , )  = 8). 
The prediction of Zamolodchikov (1989) concerns the other extreme case p + 00. 

For several values of h, H is diagonalised by standard methods. The extrapolation 
for the limit N + CO is done using the BST extrapolation algorithm (Bulirsch and Stoer 
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1964, Henkel and Schiitz 1988). Qualitatively, the ratios ri = mi+,/ mi behave as follows. 
For very small N, where N is small compared with the correlation length 6, the ri are 
close to the values predicted by conformal invariance (e.g. r ,  = 8, see Henkel (1987) 
and references therein). As N increases ri decreases until it reaches a minimum (e.g. 
r ,  = 1.35, at p 2: 8), and only after this does ri tend to its N +m limit (where .$<< N). 
The existence of this minimum makes the extrapolation for N + cx) very difficult. For 
small values of h, the minimum occurs for values of N which are far too large to allow 
for a numerical diagonalisation of H. Consequently, we have to consider relatively 
large values of h. In table 1, we give some estimates for the ratios rl and r 2 .  

Since Zamolodchikov’s (1989) result (1) can only be applied to our model (2) in 
the limit h-0, the data of table 1 should be extrapolated back to h + O  and then 
compared with 1.618 and 1.989, respectively. We find that our data are consistent with 
the theoretical prediction. Similarly, higher ratios are compatible with a continuum 
starting at 2. 

Let us briefly discuss the case k # 0. First, the spectrum does not seem to depend 
on k, as illustrated in table 2. This comes from the fact that choosing a non-zero k 
does not change the exponential decay of, say, the spin-spin correlation function but 
merely projects out some angle-dependent finite-size correction term. On the other 
hand, we can check the energy-momentum relation of a massive free particle in a 
Brillouin zone (see equation ( 5 ) )  

P 
E’ = m2+ 4 sin‘ ,. 

L 

This is done in figure 1 for m, and mz, where a straight line is obtained. Small 
deviations are likely due to finite-size (field) effects and to the fact that particles are 
expected to become free only when h + 0. We note, however, that E should be rescaled 
by some suitable factor y in order to reproduce (6). This observation can be used to 
fix the (h-dependent) overall normalisation of H. 

Table 1. Estimates for the ratios r, = mi+Jml of the inverse correlation lengths a function 
of the magnetic field, as obtained from the BST extrapolation algorithm. The numbers in 
brackets give the error in the last digit. 

~~ 

0.2 1.610 (5)  1.98 (2) 
0.3 1.6049(3) 1.968 (8) 
0.5 1.59468 (3) 1.948 (1) 
0.8 1.580710 (1) 1.9242 (1) 

Table 2. Estimates for the low-lying spectrum, for t = 1.0 and h = 0.3. 

0 5.385 31 8.643 1 10.58 11.2 12 
1 5.385 9 8.685 10.64 12.7 - 
2 5.385 8.653 10.7 11 - 
3 5.39 8.65 10.7 - - 
4 5.37 8.6 - - - 
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Figure 1. Check of the energy-momentum relation (6) for h = 0.3 (A: m, , 0: mz).  

0 5 10 15 20 
P 

Figure 2. Scaling function G I ( @ )  for the lowest gap of H, corresponding to the spin-spin 
correlation length. The symbols refer to different values of h (0: 0.01, M: 0.03, 0: 0.08, 
A: 0.2, 0: 0.3, V: 0.8). 

While (1) applies to the limit p +CO, we now consider the whole scaling functions. 
In figures 2 and 3 we give GI(p) and G I @ ) ,  which do satisfy the scaling law (3). We 
note that for p + 0, the scaling function Gi(p) shows a power-law singularity. The 
latter is nothing else than the familiar term known from conformal invariance. Writing 
(note the normalisation of H (2)) 

G i ( p )  = 4 7 7 ~ ~ p - ~ ’ ~ ~ +  H i ( p )  (7) 
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Figure 4. Reduced scaling function H , ( p ) .  

where xi is the critical exponent obtained at h =0, the singularity is substracted. We 
give the reduced scaling functions H 1 ( p )  and H&) in figures 4 and 5.  We note that 
for small values of p, where we considered values of p down to p = 0.2, H , ( p )  seems 
to be a linear function of p while H2(p) appears to depend logarithmically on p. For 
comparison, we list the scaling functions for the case of a thermal perturbation 
(z = Nlt - 11, h =0) (Henkel 1987) 
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Figure 5. Reduced scaling function H 2 ( p ) .  Note that scaling is relatively bad for small 
values of p. 

In general, conformal invariance and scaling theory provide the powers of p (or z) 
which should enter into the expansion of the Hi(p) .  Probably the data of figures 4 
and 5 are still affected by finite-size corrections so that the scaling regime is not yet 
reached completely. 

To summarise. We have studied the masses of the 2~ Ising model in a magnetic 
field, trying to confirm the prediction (1) concerning the p + 00 limit. Since the G i ( p )  
have the form (7) with H i ( p )  slowly growing with p, the limit is hard to obtain 
numerically. However, our data (see table 1) do support Zamolodchikov's prediction. 

We thank Y Goldschmidt, A Ludwig and V Rittenberg for discussions. Malte Henkel 
was supported by a grant of the Wissenschaftsausschuss of Nato via DAAD. 
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